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Abstract
The basic knowledge needed for the performance and interpretation of scattering
experiments is summarized. The probes for such experiments are x-rays and
neutrons. The scattering mechanisms are discussed and applied to crystalline
and non-crystalline materials for the determination of structural and dynamical
properties.

1. Introduction

In condensed matter like crystalline, amorphous or liquid materials the atoms are located at
distances of typically several ångströms. In order to resolve details of such structures in a
scattering experiment, the wavelength λ of the scattering probe has to be of the same order of
magnitude. For the determination of a lattice parameter a the wavelength λ has to obey λ � a.

Electromagnetic waves in the regime of x-rays with a typical energy of E = hν = hc/λ =
10 keV have a wavelength of 1.24 Å. Thus, x-rays are well suited for structural investigations.
X-rays couple to the electrons of the material.

Another probe suited for structural investigations are thermal neutrons. They are scattered
by the nuclei in the material and interact with the electron spins. Due to their mass mn the de
Broglie wavelength of neutrons is λ = h/

√
2mnE.

Thus, typical neutron energies of 50 meV correspond to a wavelength of 1.28 Å. Such
neutrons are called thermal since their energies are of the same order as kBTR � 25 meV with
kB being the Boltzman constant and TR = 300 K the room temperature.

Electrons can also be used in scattering experiments. However, they show strong
interactions with the electrons and the nuclei in the materials. Therefore, they experience
only low penetration depths. For electrons with energies E = 100 eV and a mass me, the de
Broglie wavelength corresponds to the wavelength λ = 1.23 Å.

Since x-rays are of central interest in this Euroschool, a brief discussion of their production
follows.
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1.1. Conventional x-ray xources

Classical sources for x-rays are generators where the x-rays are created in two different ways.
High-energy electrons slowed down in an anode material give rise to radiation with a continuous
frequency spectrum. This radiation is called bremsstrahlung. It is observed when any charged
particle is either accelerated or decelerated. The total radiated power P of an accelerated
electron was calculated by Larmor to be

P = 2e2

3c3

∣∣∣∣dv

dt

∣∣∣∣
2

(1)

where v describes the velocity of the electron. The angular distribution of the radiated power
is given by

dP

d�
= e2

4πc3

(
dv

dt

)2

sin2 ϕ (2)

with ϕ being the angle between the vectors of acceleration and radiation propagation. This
distribution has rotational symmetry.

The second process which can be used for x-ray generation is the recombination of
electrons after creation of unoccupied states in the inner shells of atoms in the anode
by collisions and/or photoionization. This recombination radiation is emitted as a sharp
characteristic line with a wavelength determined by the transition energy between the
corresponding shell levels.

The effectiveness of an x-ray tube is very low because less than 1% of the absorbed electron
energy is emitted as x-ray radiation and the dominant part is converted to heat. Therefore, the
x-ray intensity of conventional tubes is limited by the technical possibilities for the cooling
of the anode. X-ray generators with water-cooled and rotating anodes allow working with
electric powers of up to 90 kW.

1.2. Synchrotron radiation

Stronger sources for x-rays are nowadays synchrotrons and storage rings. The x-rays are
contained in the radiation spectrum which is emitted by charged particles accelerated on circular
orbits and which is called the synchrotron radiation spectrum.

Due to the high energy Eel of the particles, in the range of GeV, and the corresponding
high velocity, close to the velocity of light (v/c ≈ 1), the relativistic version of (1) has to be
used to calculate the emitted radiation:

P � 2e2c

R2

(
v

c

)4(
Eel

mc2

)4

∼ γ 4

R2
(3)

where R is the radius of the storage ring or synchrotron and m is the rest mass of the particle.
Due to the factor (mc2)−4 only electrons and positrons lead to strong radiation. The power of
the emitted radiation is proportional to the fourth power of the reduced energy (γ = Eel/mc2).
Therefore, with mc2 = 511 keV for electrons, γ is of the order of 104.

The angular distribution of radiation for an accelerated charge in extreme relativistic
motion is no longer described by the dipolar distribution of (2) and figure 1(a). The relativistic
transformation causes a distortion of the radiation pattern in the direction of motion, as shown
in figure 1(b). It becomes a narrow cone in the direction of the instantaneous velocity vector
of the charge. Radiation will be visible only when the velocity of the electron is directed to the
observer. It will be a burst of radiation, very short in time with �t ∼ (R/c)γ 3. The Fourier
transform of this pulse shows a corresponding broad frequency spectrum of white radiation
with a spectral cut-off just above the critical energy Ec, used to characterize the spectrum.
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Figure 1. Radiation distribution for an electron for non-relativistic (a) and relativistic (b) motion
on a circular orbit. (c) shows the far-field E distribution with the dipole characteristic in a plane
vertical to the orbit plane. The distributions in the rest frame and after Lorentz transformation in
the laboratory frame illustrate the polarization of the synchrotron radiation.

The horizontally moving electrons in a circular orbit can emit radiation at any point of the
orbit within the bending magnets. Thus, the natural angular width of the radiation cone can
only be observed in the vertical direction, leading to a vertical divergence of the photon beam.
The horizontal angular width depends on the length of the observed arc (see also figure 1).

There is another important consequence of the relativistic motion of the electron or
positron. The electric field E with its characteristic dipole distribution in the rest frame is
contracted by the Lorentz transformation (figure 1(c)). As a consequence, the radiation is
dominantly polarized with E in the plane of motion. As long as the radiation is observed
within the orbit plane, it is completely linearly polarized. Observation at a small elevation
angle ψ out of this plane will detect elliptically polarized radiation.

In straight sections of storage rings no radiation is emitted. However, the installation of
periodic magnetic structures can lead to additional periodic deflections of the electron beam
without disturbing the rest of the orbit. The induced oscillatory movements cause radiation.
Its spectral and spatial behaviour is determined by the specific magnetic structure of such
insertion devices.

Figures 2(b)–(d) indicate the electron beam trajectories and the radiation patterns for the
insertion devices wavelength shifter, wiggler and undulator. For comparison, the radiation
pattern for a bending magnet is given as well (figure 2(a)). In all cases the vertical angular
width of the emitted radiation is of the order of 1/γ . Only the horizontal angular width is
varying.

A wavelength shifter (figure 2(b)) changes locally the radius of the electron path of a
given storage ring. Because the power of radiation and its frequency distribution depend on
the radius, their characteristics can be varied.

An undulator (figure 2(c)) is a spatial periodic arrangement of magnetic dipoles which
leads to the emission of quasi-monochromatic radiation of relativistic electrons with a strongly
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Figure 2. Beam trajectories and emission patterns for a bending magnet (a), wavelength shifter (b),
undulator (c) and wiggler (d).

increased photon flux. The increased photon flux is due to a coherent superposition of wavelets
emitted by each section of the undulator magnets. The dipole arrangement leading to such
strong interference effects has to produce beam deflections which are always smaller than the
opening angle (1/γ ) of the radiation. Therefore, the horizontal angular width of the radiation
is about 1/γ . The brightness of the radiation emitted by an undulator is greater than that of
an ordinary bending magnet. This ratio is approximately the square of the number of periods.
Due to the source size of small emittance rings the brilliance of the undulator is very high.

Periodic magnetic dipole arrangements leading to stronger deflections of the trajectory
are called wigglers (figure 2(d)). Such multipole wigglers produce a complicated spectrum,
which on the high-energy side resembles the simple addition of the spectra of several bending
magnets. The brightness is increased by a factor corresponding to twice the number of periods.
The horizontal opening angle and, therefore, the beam divergence is larger for the wiggler than
for the undulator.

Special magnetic structures can also be defined to generate circularly polarized radiation.
Figure 3 shows the development of the brilliances of x-ray sources starting from

conventional x-ray tubes and rotating anode x-ray generators. The different generations of
synchrotron sources having bending magnets in the first generation, wigglers in the second and
undulators in the third generation, led to an enormous increase in the brilliances. In particular,
the very low emittance defined by the size and the angular divergence of the electron or positron
beam circulating in the rings of the third generation sources contributed to these high values.

Still higher brilliances are expected to be achieved in the next, the fourth generation of x-
ray sources (Brinkmann et al 1997) which are based on free electron lasers and use the concept
of a single pass self-amplification of spontaneous emission (SASE), recently developed by
Bonifacio et al (1994), Saldin et al (1995), Freund and Nai (1999) and Saldin et al (2000).
During the path of an electron bunch through a long undulator structure, the interaction of
the emitted synchrotron radiation and the propagating electromagnetic wave causes a density
modulation of the travelling electron bunch. The electrons are sorted into microbunches which
stimulates a self-amplifying emission of radiation. The saturation will be reached when all
the microbunches radiate coherently. The emitted intensity of such a free electron laser device
will then be proportional to the number of electrons squared leading to a peak brilliance up to
ten orders of magnitudes higher than that presently achievable (figure 3).
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Figure 3. Brilliances of different x-ray sources given as the number of photons emitted in the unit
time by the unit source area in the unit solid angle in a relative bandwidth of 10−3 for a certain
photon energy.

2. Scattering cross section

A general scattering experiment is shown schematically in figure 4. This arrangement is valid
for all probes such as neutrons, electron beams and electromagnetic radiation. The incident
beam of well defined wavevector ki, energy Ei and polarization unit vector ei is scattered
into the solid angle element d� under the scattering angles 2θ and φ. The scattered beam is
completely defined by the new wavevector kf , the energy Ef and the polarization unit vector
ef . Q is called the scattering vector. The scattered intensity is described by the double
differential cross section d2σ/(d� dωf). It is given by the removal rate of particles out of the
incident beam as the result of being scattered into a solid angle d� with a frequency range
of dωf corresponding to an energy range dEf = h̄ dωf . This contains contributions of the
beam that have been scattered elastically with no change of energy and other contributions
that have changed energy due to inelastic scattering. Therefore, the scattering process contains
information on energy and momentum transfers by

E = h̄ω ≡ Ei − Ef (4)

and

h̄Q ≡ h̄(ki − kf). (5)
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Figure 4. Scattering geometry

The discussion throughout this whole paper concentrates on the scattering of x-rays where
the transferred energy is normally smaller than the photon energy (E � Ei). In this case the
momentum transfer h̄Q is simply connected with the scattering angle θ by

h̄Q = 2h̄ki sin θ. (6)

There is a very elegant and informative presentation of the double differential scattering
cross section,

d2σ

d� dωf
=

(
dσ

d�

)
0

S(Q, ω) (7)

which was derived by Van Hove (1954). This description has the advantage of allowing us
to separate the double differential cross section into two contributions. The coupling of the
beam to the scattering system is characterized by the intrinsic cross section (dσ/d�)0 and the
properties of the sample in the absence of the perturbing probe are expressed by the scattering
function S(Q, ω).

For the following, it is sufficient to concentrate on elastic scattering experiments with
Ei = Ef and to discuss the static scattering function S(Q) and the single differential scattering
cross section, dσ/d�. In this case (7) can be rewritten,

dσ

d�
=

(
dσ

d�

)
0

S(Q). (8)

Inelastic scattering experiments will be treated in section 6.
A plane wave eiki ·r with wavevector ki is elastically scattered at a scattering centre at the

fixed position r = 0 (figure 5). At large distances from the scattering centre

eiki·r −→ eiki·r + f (�)
eikf ·r

r
(9)

holds. After the scattering process the original plane wave is superimposed by a spherical
wave with the scattering amplitude f (�) called the scattering length due to its dimension of
length.

The scattering intensity is then given by the differential cross section through(
dσ

d�

)
0

= |f (�)|2. (10)

The total cross section taking into account all scattered particles is given by

σ =
∫ (

dσ

d�

)
0

d� =
∫ 2π

0
dφ

∫ π

0
sin θ dθ |f (θ, φ)|2. (11)
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Figure 5. Scattering of a plane wave at a scattering centre at fixed position.

Figure 6. Intrinsic cross sections for coherent scattering of neutrons (•, ◦) and for x-ray scattering
(×) from atoms of the atomic number Z, in the forward direction (Q → 0).

2.1. Neutron scattering by a fixed nucleus

The scattering length b of a nucleus is determined experimentally from the isotropic scattering
cross section (figure 6)(

dσ

d�

)
0

= |b2| = constant. (12)

In general, the scattering length is a complex quantity which is characteristic for each
nucleus. It is of the order of |b| ∼ 5 × 10−15 m. The total scattering cross section is
σ = 4π |b2|. The scattering properties of neutrons are determined by the nucleus–nucleus
interactions which are of short range (∼10−15 m) compared to the large wavelength of the
neutrons themselves (λn � |b|). They can be described by using so called Fermi pseudo-
potentials. Due to different phase shifts during the scattering processes the scattering lengths
can be positive or negative (see also Lovesey (1986)).
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2.2. Scattering of electromagnetic radiation by a bound electron

A classical localized electron bound elastically to a fixed nucleus is hit by an electromagnetic
wave. The electric field of this wave is described by

E(r, t) = eiEi ei(ki·r−ωt). (13)

ei is the polarization vector, and due to the transverse character of the wave, ei · ki = 0 holds.
The electric field of this wave excites the electron (mass me) into forced dipole oscillations.
The equation of the motion s(t) for such an oscillator model can be written according to
Newton as

mes̈ + meω
2
r s − meγ ṡ = eE(t) (14)

assuming an eigenfrequency ωr of the electron and a damping constant γ . The solution is

s(t) = e

me

1

ω2
r − ω2 − iγ ω

· E(t) (15)

describing the forced damped oscillations of the electron. This induces an electric dipole
moment

p(t) = es(t) = α(ω)E(t) (16)

with the polarizability

α(ω) = e2

me

1

ω2
r − ω2 − iγ ω

. (17)

However, an oscillating dipole itself acts as an emitter of an electromagnetic field leading
to an electric field Ed(r, t) which at large distances |r| � |s| from the emitter can be described
by (Jackson 1962)

Ed(r, t) = − 1

c2

1

r
[p̈(t) − (p(t) · er)er]. (18)

This leads to the ratio∣∣∣∣Ed

Ei

∣∣∣∣ = 1

r2

ω4

c4
|α(ω)|2|ei − (ei · er)er|2 = 1

r2
|f (�)|2. (19)

Without going into details, |ei − (ei · er)er|2 can be expressed by (1 + cos2 θ) under
the assumption of unpolarized radiation which allows one to average over all polarization
directions of the incoming radiation. This delivers the scattering cross section

dσ

d�
= |f (θ, ω)|2 = 1

2
(1 + cos2 θ)

ω4

c4
|α(ω)|2 (20)

for the scattering of a single electron when it is hit by an electromagnetic wave.
The dependence of the scattering cross section on the frequency of the exciting wave can

be best discussed for the following cases (figure 7):

ω � ωr : |α(ω)|2 ≈ e4

m2
eω

4
Rayleigh scattering (21)

which is typical for light scattering,

ω ≈ ωr : |α(ω)|2 ≈ e4

(meγ ωr)2
Resonance scattering (22)

and

ω � ωr : |α(ω)|2 ≈ e4

m2
eω

4
r

Thomson scattering. (23)
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In the last case, typical for hard x-rays, the frequency of the incoming electromagnetic radiation
is so high that the electrons are vibrating out of phase without further frequency dependence.
This frequency-independent Thomson cross section can be written as(

dσ

d�

)
Th

= fTh(θ) = 1

2
r2

e (1 + cos2 θ) (24)

using the classical electron radius re = e2/mc2 = 2.8 × 10−15 m. Therefore, (dσ/d�)Th is of
the order of 10−29 m2.

Figure 7. Schematic view of the intrinsic cross section (dσ/d�)0 for the scattering of
electromagnetic radiation in the visible light and x-ray range. ωr is a typical resonance frequency
of the scattering system and (dσ/d�)Th is the Thomson scattering cross section.

Scattering experiments performed with incident energies Ei close to h̄ωr are resonance
experiments which allow the enhancement of the scattering response. With modern
synchrotron radiation sources such experiments can be easily carried out due to the tunability of
the photon energies. Historically, the expression anomalous dispersion is used in context with
the behaviour of the scattering cross section in this resonance regime. The scattering length
f (ω) itself can be described by adding a complex anomalous scattering length f ′(ω) + if ′′(ω)

to the frequency-independent Thomson part fTh:

f (ω) = fTh + f ′(ω) + if ′′(ω). (25)

This frequency dependence opens a possibility for the determination of the scattering phase
'(ω)

f (ω) = |f (ω)| ei'(ω) (26)

which is not possible from (8). For details see, for instance, Materlik et al (1994).

3. Scattering of x-rays by an atom

If two electrons at the positions 0 and rc are excited by an incoming electromagnetic wave the
phase differences of the scattered waves have to be taken into account. Figure 8 shows the
path difference of the scattered waves for such a situation. The phase difference is given by

2π

λi
× path difference = 2π

λi

1

ki
(ki − kf) · rc

= (ki − kf) · rc

= Q · rc (27)
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Figure 8. Path difference of waves scattered at the positions 0 and rc.

k i
k f

rc

Figure 9. Schematic view of the scattering by the electron distribution of an atom.

using ki = kf = 2π/λi. Therefore, the scattering amplitude depends on the scattering vector
Q and the locations of the electrons, and is obtained by phase-correct addition of both partial
waves.

In general, the nucleus in an atom is surrounded by a spatial distribution of electrons,
which can be described by a local electron density ne(r) within the atomic volume V . For this
discussion, x-ray scattering in the frame of Thomson scattering with ω � ωr is assumed.

The scattering amplitudes of all electrons have to be added up using the correct phase
shifts, (27), leading to the atomic structure factor fj(Q) by

fj(Q) =
∫

V

dV ne(r) eiQ·r. (28)

For forward scattering with Q = 0 no phase difference occurs and, thus, fj(0)

= ∫
V

dV ne(r) = Z with Z being the total number of electrons in the atom. Equation (28)
can also be read as the Fourier transform of the spatial electron density distribution ne(r).
Due to this spatial distribution of the shell electrons there is always a Q dependence of the
x-ray scattering as a footprint of the size and form of the distribution. Figure 10 demonstrates
this behaviour for different ions. The obvious Q dependence is absent for neutron scattering
experiments, since the nucleus appears as a point source on the scale of the thermal neutron
wavelengths.

However, for neutron scattering, a Q dependence occurs for the magnetic scattering where
the magnetic moment caused by unpaired electrons couples to the magnetic moment of the
neutron. Normally, only a few electron orbits in the outer shell of the atom will contribute
to the magnetic moment. Therefore, the magnetic scattering form factor for neutrons is not
identical to the electronic form factor for x-rays.

4. Scattering from crystals

4.1. Diffraction geometry of crystal lattices

When the atoms are arranged in a crystal lattice the well known idea of Bragg (1913) can be
used to understand the scattering intensity distribution. The incoming waves are reflected at
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0 2 4 6 8 10 12

f

Si4+Mg2+NeF1-

"point" atom

Q (4πsinΘ/λ)

Figure 10. Scattering factors for three ions having a total of ten electrons surrounding the nucleus
together with the atomic form factor of neon (Z = 10) and a corresponding point source with the
same charge are shown as functions of Q. The curves are according to data from Hartree–Fock
calculations as given in the International Tables for x-ray Crystallography (1974).

d  sinΘ.

d

Θ Θ

Figure 11. Diffraction geometry with path difference of waves scattered at a crystal lattice.

parallel lattice planes defined by the periodically aligned atoms. Figure 11 demonstrates the
path difference between waves being reflected from adjacent planes with spacing d under the
Bragg angle θ to be 2d sin θ . Diffraction maxima are visible if this path difference occurs to
be an integer multiple of the wavelength,

2d sin θ = nλi Bragg’s law. (29)

Bragg’s law clearly shows that reflections are only possible for λ � d. From the position
of the reflections, information on the Bravais lattice type is revealed. In order to analyse a
complete crystal structure, additional information on the basis of the structure is necessary.
This information can be obtained from the analysis of the intensities of the Bragg maxima, as
will be shown later.

4.2. Interference of x-rays at a crystal lattice

Historically, at about the same time von Laue (1940) was following a different approach in
order to understand the scattering of x-rays at a crystal lattice. The Bravais lattice has N lattice
points n, described by their position vectors rn = n1a + n2b + n3c with the basis vectors a, b

and c in real space. For simplicity, only one type of atom is assumed to be present, fn = f .
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0

k r n
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f

Figure 12. Diffraction geometry with path difference of scattered waves.

The scattered amplitude of such a lattice is then given by the phase-correct addition of all
separate scattering contributions

F ′(Q) =
N∑
n

fn eiQ·rn

= f (Q)

N∑
n1,n2,n3

eiQ(n1·a+n2·b+n3·c)

= f (Q)

( N1∑
n1

ein1Q·a
)( N2∑

n2

ein2Q·b
)( N3∑

n3

ein3Q·c
)

. (30)

Here, the lattice sum over N atoms in the crystal is separated into three partial sums over
N1, N2 and N3. The sums can be treated as geometric progressions leading to

F ′(Q) = f (Q)

(
sin[ 1

2 N1Q · a]

sin[ 1
2Q · a]

)(
sin[ 1

2 N2Q · b]

sin[ 1
2Q · b]

)(
sin[ 1

2 N3Q · c]

sin[ 1
2Q · c]

)
. (31)

The condition for constructive interference with sharp maxima requires that each of the
three factors has to be non-zero, individually. This means that Q has to satisfy three equations
simultaneously,

Q · a = 2πh Q · b = 2πk and Q · b = 2πl (32)

where h, k and l are any set of integers. These conditions are known as Laue conditions. In
order to identify the solutions of the scattering vector Q that fulfill these conditions the Ansatz
Q = hA+kB + lC with a new set of basis vector A, B, C is made. This leads to the relations

A = 2π

Vc

(b × c) B = 2π

Vc

(c × a) C = 2π

Vc

(a × b) (33)

where Vc = a · (b×c) is the volume of a unit cell. The vectors A, B, C have the dimension of
a reciprocal length, therefore the lattice they span is called the reciprocal lattice. In this way,
each crystal lattice has two associated lattices, the real lattice with its points r = n1a+n2b+n3c

and the reciprocal lattice with its points G = hA + kB + lC. Since G · r = 2π · integer,
the phase factor eiG·r equals 1 and, correspondingly, the lattice sum (30) delivers a diffraction
maximum for Q = G. Therefore, x-ray scattering gives an image of the reciprocal lattice
which can be understood as a lattice of reciprocal lattice points in the Fourier space.

4.3. Reciprocal lattice

The role of the reciprocal lattice can be illustrated further with the discussion of the momentum
transfers involved in the scattering process. Figure 13 shows the scattering triangle made up by
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k i

k f

Q = G

Figure 13. Diffraction geometry with path difference of scattered waves.

k i

k f
|

k
||

f

k f

r = 2 π  
λ

Figure 14. Allowed kf leading to scattering maxima according to the Ewald construction.

Q, ki and kf together with the reciprocal lattice points. There is constructive interference for
the indicated case, where the scattering vector Q coincides with the lattice vector G. Therefore,

ki − kf = Q = G. (34)

Multiplying this equation by h̄ delivers

h̄kf − h̄ki = h̄Q = h̄G (35)

with h̄k = h̄2π/λ = h/λ = p being the momentum. Therefore, (35) being equal to (5) stands
for the momentum conservation in the collision process of the x-ray photon and the crystal. h̄Q

is the momentum transfer during the scattering process and h̄G shows the possible momentum
acceptance by the lattice during an elastic process.

This fact was used by P P Ewald for an instructive geometric interpretation of Bragg’s law
and the prediction of allowed scattering maxima.

In figure 14, ki shows the direction of the incoming beam and ends at any point of the
reciprocal lattice. A sphere of radius |ki| = 2π/λi around the origin of ki gives the length of
kf of the scattered beam. Now, any point of the reciprocal lattice on the surface of the sphere
defines a diffracted beam, kf = ki − G.

The unit cell of the reciprocal lattice is the Brillouin zone. Due to translational symmetry
it can be shown that all information can be found by investigations of only one Brillouin zone,
by the first or any higher one.

4.4. Scattering at a crystal structure

As indicated already earlier, the lattice positions rn and the basis locations rα have to be taken
into account for the description of the scattering at a crystal structure. Therefore, the complete
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scattering amplitude for atoms with atomic form factors fα(Q) in a crystal structure is given
by

F ′(Q) =
∑
n,α

fα(Q) eiQ·(rn+rα)

=
∑

n

( ∑
α

fα(Q) eiQ·rα

)
eiQ·rn

=
∑

n

F (Q) eiQ·rn (36)

with the structure amplitude

F(Q) =
∑

α

fα(Q) eiQ·rα

(37)

which describes the scattering of a unit cell. The structure amplitude causes constructive and
destructive interference and can be a complex quantity.

Therefore, the positions and the intensities of the Bragg maxima have to be observed for
a complete structural analysis.

4.5. Scattering by an ensemble

In the treatment of the scattering process so far one has assumed a weak interaction between
the probe and the scattering system. The scattered intensity is small compared to the primary
intensity. There is no interaction between the scattered and the primary wave. Multiple
scattering is neglected, and the primary wave is essentially unchanged on its path through the
sample. The discussion is carried out within the kinematic approximation.

The complete amplitude F ′(Q) of the scattered wave is then obtained by phase correct
superposition of all partial waves originating in the case of x-ray scattering from the electrons
with density ne(r) of the sample

F ′(Q) =
∫

sample
d3r ne(r) eiQ·r. (38)

The measured intensity I is

I ∝ S(Q) = F ′(Q) · F ′∗(Q) = |F ′(Q)|2. (39)

This leads to

S(Q) = 1

N

∣∣∣∣
∫

sample
d3r ne(r) eiQ·r

∣∣∣∣
2

= 1

N
|ñe(Q)|2 (40)

which shows that the scattering function is determined by the Fourier transform |ñe(Q)| of the
electron density distribution ne(r) in the sample.

In principle, the electron density distribution ne(r) can then be determined from the
experimentally obtained S(Q) by back transformation leading to the positions of the chemical
elements in the sample. However, such measurements of S(Q) can only be performed in a
finite Q-range with finite resolution �Q. This is equivalent to an ensemble average 〈〉vs on
many sample pieces of volume vs = (2π/�Q)3. This problem becomes serious when instead
of perfect periodically ordered systems less ordered ones like alloys or liquids are analysed.
Additionally, there is the phase problem of the structure analysis, already mentioned in the
context of (26), which provides only the magnitude but not the phase ' of ñe(Q) ≡ |ñe(Q)| ei'.
Therefore, generally speaking one starts with a model assumption for the electron density
distribution ne(r) for the calculation of the scattering function Sm(Q), which then is compared
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with S(Q), the measured one and improved by refinement. Figure 15 shows schematically
the procedure of such a structure analysis. Here, it is assumed that the sample with N atoms
contains Nµ atoms of the chemical element µ at positions rm

µ indicated by the occupation
numbers σm

µ , being 1 or 0 if the site is occupied or empty, respectively.

 µ with

r

    comparison

m  =    1         2      3     4          5         6
 =    2         1      1     3          2         1

Q∆

       structure analysis

m
µ

µ
positions               ,  m = 1 .....N

sample
N    atoms of types      =1 ... s

µ

e

measuredmodel

n  (  )

r Q

S(   )Qr

S (    )QS   (    )Qm

Figure 15. Principle of the structure analysis with comparison of the measured scattering function
S(Q) with a suited model function Sm(Q).

In this way most details of the structure of a sample can be obtained. For further illustration
of the structure analysis a few simple cases will be discussed in this scheme.

4.6. Scattering by a monoatomic ideal crystal

Figure 16 shows a simple monoatomic ideal crystal with perfect periodic electron density. The
scattering function is obtained by the square of the Fourier transform of the density. It shows
a series of δ-functions, which give the Bragg reflection intensities. From their positions the
locations of the reciprocal lattice points and, thus, the size and form of the unit cell of the
crystal is obtained. The integrated intensities of the Bragg maxima

∫
Q≈Ghkl

S(Q) d3Q = |f (Ghkl)|2 (41)

deliver the atomic structure factors and, thus, the local electron distribution at the sites of the
periodically arranged atoms. Ideally, there is no scattering intensity between the reflections
due to destructive interference of the scattered waves.

4.7. Scattering by an ideal crystal with z atoms per unit cell

For an ideal crystal with z = 2 atoms per unit cell, figure 17 shows again the electron distribution
along one lattice direction and the scattering function calculated on this basis. There are again
δ-functions showing the positions of the reciprocal lattice; however, in this case the envelope
function determining the integrated intensities of the Bragg maxima leads to the structure
amplitude which is known from (37) and which depends on the electron distribution in a unit
cell.
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Figure 16. Schematic electron density distribution in real space for a monoatomic ideal crystal
along one lattice direction (left-hand side) with the hatch area of a single atom and the scattering
function calculated on this basis (right-hand side). The dashed curve indicates the scattering
function of a single atom (following Schilling 1992).
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and the scattering function calculated on this basis (right-hand side). The dashed curve indicates
the square of the structure factor (following Schilling 1992).
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Figure 18. Schematic electron density distribution for certain times of a monoatomic liquid (left-
hand side) and its scattering function (right-hand side) (following Schilling 1992).

4.8. Scattering by a monoatomic liquid

Following along this line, it is straightforward to deal also with disordered systems like a
monoatomic liquid. It is only necessary to look at the electron density distribution at different
times (figure 18). Since the atoms are at different positions at different times during time evo-
lution, the elastic x-ray scattering experiment will average over a series of atomic distributions
and deliver only statistical information about the distance distributions in the liquid.
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The scattering function (figure 18) exhibits a characteristic structure but no Bragg maxima.
At large momentum transfers Q it follows essentially the squared atomic form factor law. This
diffuse scattering at large Q represents only the Fourier transform of the electron distribution
of single atoms. There are intensity oscillations visible at the positions Q ≈ 2π/RI given by
the averaged nearest-neighbour distances RI. At small values of Q, the scattering function
approaches the value of the isothermal compressibility determined by the macroscopic density
fluctuations. The average density of the atoms 〈ne〉 leads to a Bragg maxima δ(Q = 0) in the
forward direction. The scattering function can be written as

S(Q = |f (Q)|2
N

〈∣∣∣∣
N∑
m

eiQ·rm

∣∣∣∣
2〉

t,Vs

= |f (Q)|2
〈 N−1∑

l=1

eiQ·(rm−rm+l)

〉
m

≡ |f (Q)|2g̃(Q) (42)

with g̃(Q) being the Fourier transform of the pair-correlation function g(R) since the double
sum in (42) can be written as an average sum over the distances R = rm − rm+l . Here, the
pair-correlation function,

g(R) =
〈 N−1∑

l=0

δ(R − Rl)

〉
m

(43)

describes the probability of starting from any atom in the sample and finding another atom at
the distance Rl per volume element. In an isotropic liquid, g is a function of |R| and, thus, g̃

is a function of |Q|.
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Figure 19. Schematic view of the pair correlation function.

Figure 19 shows the pair correlation function together with a schematic view of the atomic
arrangement in the liquid. Since the atoms do not penetrate each other, g(R → 0) = 0. At
certain distances Rl , there are maxima of g(R) describing so-called coordination shells (I, II
etc) At large Q, g(R) becomes constant and equals the average density 〈ne〉 in the liquid.

The ideas presented here are also applicable to amorphous solids.

4.9. Temperature dependance of the scattered intensity

So far, in the discussion of the scattering profiles of the crystalline structures the temperature
effect has been neglected. However, the atoms, respectively the electrons, are not at rest,
and lattice vibrations exist. There are thermal displacements which can be described as
u(t) = u cos ωt with ω = 1012–14 Hz. Therefore, the actual positions of the atoms are
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r(t) = rn + u(t). For the calculation of the scattering function a time average has to be
performed.

Fn(Q) ∼ 〈eiQ·(rn+u(t))〉t ∼ eiQ·rn〈eiQ·u(t)〉t . (44)

It can be shown that for cubic crystals this leads to a reduction of the intensity of a Bragg
maximum,

I = I0 e− 1
3 〈u2〉Q2 = I0 e−2W (45)

where e−2W is the Debye–Waller factor (see Warren 1969).
In the high-temperature approximation of a harmonic oscillator, 〈u2〉 = 3kBT/Mω2 holds

for the mean-square displacement of the atoms. The reduction of the intensity increases with Q2

(figure 20). The missing intensity is scattered inelastically and visible between the reflections as
thermal diffuse scattering (TDS) containing the information on the atomic movements (see the
article by Burkel this volume). Because of the ω−2-dependance, the acoustic modes contribute
more to the TDS than the optic modes.
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Figure 20. Schematic view of the temperature effect on the scattering intensity distribution.

5. Coherent and incoherent scattering

The scattering cross section for a system with many identical atoms can be written as given in
(30). However, even if these are chemically identical atoms there can be different scattering
lengths fµ, for instance in the case of neutrons due to different isotopes or nuclear spins. For
a total random arrangement with no correlations assumed, the scattering cross section can be
written as

dσ

d�
∝

∑
n,m

f ∗
m(Q)fn(Q) eiQ·(rn−rm). (46)

The different isotopes µ are statistically distributed with concentration cµ = Nµ/N within the
sample. It holds that

f̄ (Q) =
∑

µ

cµfµ(Q) and |f (Q)|2 =
∑

µ

cµ|fµ(Q)|2. (47)

This leads to

f ∗
m(Q)fn(Q) = |f (Q)|2(1 − δnm) + |f (Q)|2δnm

= |f (Q)|2 + [|f (Q)|2 − |f (Q)|2]δnm

= |f (Q)|2 + |f (Q) − f̄ (Q)|2δnm. (48)
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Therefore, the scattering function reads as

dσ

d�
∼ |f (Q)|2 · S ′(Q) + |f̄ (Q) − f (Q)|2 =

(
dσ

d�

)
coh

+

(
dσ

d�

)
inc

(49)

with the coherent part (dσ/d�)coh and the incoherent part (dσ/d�)inc of the scattering function.
The first coherent part contains the interference effects and describes scattering from a

system with identical atoms f (Q) = f (Q), in which case the scattering amplitudes are added
and then squared. The second or incoherent part does not contain interference effects, and the

scattering occurs as of independent scatterers with f (Q) = f (Q) − f (Q). Therefore, the
different scattering intensities are added resulting in a weak Q dependance of the scattering
intensity. In x-ray scattering, the first part shows the structure as discussed before, whereas
the second part with its diffuse scattering reveals disorder effects of the structure as far as the
disorder is point-like and uncorrelated.

6. Inelastic scattering

So far, the discussion of the scattering phenomena has been restricted to elastic scattering
experiments. However, besides the already mentioned lattice vibrations, there are a variety of
other excitations possible in condensed matter.

A typical x-ray excitation spectrum for condensed matter is shown schematically in
figure 21. The elastic line at zero energy transfer is indicated as well. The lattice and molecular
vibrations have typical energies up to several hundred meV. In the low-eV regime electron–
hole pair creation is detectable. Plasmon excitations are correlated with energies around 5 to
20 eV. Core shell excitations require drastically higher energy transfers.

Figure 21. Typical x-ray excitation profile in condensed matter, drawn schematically as a function
of the excitation energy. It shows contributions due to elastic scattering, phonon scattering, electron-
hole pair creation and plasmonic and core level excitations.

The general scattering experiment follows still the same layout as already sketched in
figure 4, only this time energy transfers E = h̄ω ≡ Ei − Ef are also resolved. This permits
the observation of scattering contributions with changed energy due to inelastic scattering. In
this discussion, the transferred energy is still smaller than the photon energy (E � Ei) and
(7) is valid. For the interpretation of inelastic scattering experiments, the double differential
scattering cross section d2σ/d� dωf and the scattering function S(Q, ω) from (7) have to be
discussed.
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The scattering function can be investigated in various modifications. A basic
representation for a many-body system of particles at the positions rj with discrete initial
and final states ϒi and ϒf is expressed according to Fermi’s ‘golden rule’ by

S(Q, ω) =
∑
ϒi,ϒf

∣∣∣∣
〈
ϒf

∣∣∣∣
∑

j

eiQ·rj

∣∣∣∣ϒi

〉∣∣∣∣
2

δ(h̄ω + Eϒf − Eϒi). (50)

The phase of the scattering amplitude is described by eiQrj . The matrix elements contain the
probabilities for excitations from the initial to the final states and the delta function gives the
information about the corresponding frequency. According to (50), the scattering amplitudes
from the different scatterers are added and then squared. This leads to an interference between
the scattering amplitudes.

A sophisticated representation of the scattering function was derived by Van Hove (1954),

S(Q, ω) = 1

2π

∫
dt e−iωt

〈
ϒi

∣∣∣∣
∑
j,j′

e−iQ·rj(t) eiQ·rj(0)

∣∣∣∣ϒi

〉
. (51)

It describes the correlations of the scattering phases of the particles at positions rj (t) at different
times t . In the classical limit it represents essentially the Fourier transform in time of the density
correlation function and gives information on the particle fluctuations in the scattering system
in the same initial states ϒi at different times.

The dependence of the scattering phases on the term Q ·rj can be used for a classification
of the scattering process (Platzman 1974). Thereby, the inverse of the transferred momentum
h̄Q has to be compared with a characteristic length ζchar of the scattering system describing
the spatial inhomogeneity. It can be an interparticle distance or a screening length.

For Qζchar � 1, there exists interference between the scattering amplitudes from many
particles of the system. Consequently, mainly the collective behaviour of the particles will
be detectable. Therefore, collective motions of the scattering system like phonons, magnons
or plasmons can be observed if, in addition, the transferred energy is in the characteristic
frequency range of these excitations.

For Qζchar � 1, the interference of the scattering amplitudes is negligible and the
scattering contributions of different particles are independent. Therefore, single-particle
properties are observed, such as, for example, Compton scattering (Platzman 1974) in the
case of photon interaction with an electron system, if the photon energy is large compared to
the binding energy of the electron.

In the intermediate ranges Qζchar ≈ 1, both collective and single-particle properties are
visible.

The scattering function (50) is often transformed to representations that are more suitable
to describe important physical properties of a particular system.

For the study of collective excitations, the response of a system to the incident and scattered
photons can also be expressed by the imaginary part or, in other words, by the dissipative part
of the dynamic susceptibility χ(Q, ω),

S(Q, ω) = − 1

π

1

1 − e−βh̄ω
Im χ(Q, ω) (52)

with β = 1/kBT .
For the special application to an electron gas with density N the dielectric function ε(Q, ω)

is usually used in the scattering function (Pines and Noziéres 1966),

S(Q, ω) = h̄Q2

4π2e2N

1

1 − e−βh̄ω
Im

[ −1

ε(Q, ω)

]
(53)
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where Im [−1/ε(Q, ω)] is the macroscopic energy loss function describing the response of
the electron gas.

Thus, inelastic scattering with synchrotron radiation can access a broad spectrum of single-
particle and collective excitations.

In a complete discussion of the inelastic scattering it is import to include both contributions,
the coherent and the incoherent parts. Therefore, the double differential cross section has to
be written in the form

dσ

d� dω
=

(
dσ

d� dω

)
coh

Scoh(Q, ω) +

(
dσ

d� dω

)
inc

Sinc(Q, ω) (54)

coherent part incoherent part
⇓ ⇓

interference effects no interference effects
⇓ ⇓

collective properties single-particle properties
Fourier transform in Fourier transform in

space and time space and time
of of

pair-correlation function self-correlation function

The comments below (54) indicate how the coherent and the incoherent parts lead to
the determination of the single-particle and the collective properties from the corresponding
correlation functions.

So far, the discussion of the interaction of x-ray radiation with the electrons in the sample
has been restricted to the Thomson scattering cross section, as introduced in (24). However,
in the scattering process the electrons in the sample which are accelerated by the incident
field give rise to electric and magnetic dipole reradiation. The Thomson term considers only
the electric part. In order to take both contributions into account, the double differential cross
section can be written using an expanded scattering function S ′(Q, ω) as (Platzmann and Tzoar
1970)

d2σ

d� dωf
= r2

0 · S ′(Q, ω) = r2
0 ·

∑
ϒi,f

∣∣∣∣〈ϒf

∣∣∣∣
∑

j

Mj eiQrj

∣∣∣∣ϒi

〉∣∣∣∣
2

δ(Ef − Ei − ω). (55)

Mj is the amplitude for the scattering from a single electron with position rj and spin σj . In
a simplified approach with only leading terms, the amplitude Mj is written as

Mj = A + iBσj

with

A = ei · ef

and

B = −h̄ωi/mc2[(ei · ef(k̂i × k̂f) − 1/2(Q̂Q̂)(ei × ef) − Q̂ × (Q̂ × ei × ef).

k̂i, k̂f are unit wavevectors (Blume 1985).
The first part of the amplitude Mj describes the charge scattering through the Thomson

scattering term and leads to (7) and (24), as discussed so far. The second part gives the
spin-dependent part of the scattering amplitude. Its magnitude is about h̄ωi/mc2 ≈ 10−2.

This small spin-dependent part can be observed due to the fact that the magnitude of the
Thomson contribution can be varied and even be extinguished experimentally by an appropriate
selection of the polarization vectors. There is also an interference term between the spin-
dependent and the spin-independent terms. By using linearly or circularly polarized photons,
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for instance, from an asymmetric wiggler, these contributions can be distinguished, and the
magnetic response functions of different systems can be studied.

Understanding of magnetic phenomena requires a knowledge of the whole magnetic
excitation spectrum. Magnetism in condensed matter is produced by unpaired electrons.
Strong exchange interactions lead to collective excitations, magnons, which merge after a
strong dispersion into a broad particle–hole continuum. The excitation energies are as high as
several electronvolts.

Due to the small magnitude of the magnetic scattering term the scattering cross section has,
including form factors, a ratio of about 4 × 10−6 between charge and magnetic scattering for
x-rays in the kiloelectronvolt range. This means that the study of magnons with inelastic x-ray
scattering needs high photon energies and even more intense sources than presently available.

7. Conclusions

This short discussion of basic properties of scattering experiments will be useful for the
following contributions which specialize on inelastic scattering aspects.
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